BI is dead. Long live BI!

As I was riding the bus home from jury duty the other day[1] I saw this tweet come in from Eric Vogelpohl.

There’s a lot to unpack here. and I don’t expect to do it all justice in this post, but Eric’s thought-provoking tweet made me want to reply, and I knew it wouldn’t fit into 280 characters… but I can tackle some of the more important and interesting elements.

First and foremost, Eric tags me before he tags Marco, Chris, or Curbal. I am officially number one, and I will never let Marco or Chris forget it[2].

With that massive ego boost out of the way, let’s get to the BI, which is definitely dead. And also definitely not dead.

Eric’s post starts off with a bold and simple assertion: If you have the reactive/historical insights you need today, you have enough business intelligence and should focus on other things instead. I’m paraphrasing, but I believe this effectively captures the essence of his claim. Let me pick apart some of the assumptions I believe underlie this assertion.

First, this claim seems to assume that all organizations are “good w/ BI.” Although this may be true of an increasing number of mature companies, in my experience it is definitely not something that can be taken for granted. The alignment of business and technology, and the cultural changes required to initiate and maintain this alignment, are not yet ubiquitous.

Should they be? Should we be able to take for granted that in 2019 companies have all the BI they need? [3]

The second major assumption behind Eric’s first point seems to be that “good w/ BI” today translates to “good w/ BI” tomorrow… as if BI capabilities are a blanket solution rather than something scoped and constrained to a specific set of business and data domains. In reality[4], BI capabilities are developed and deployed incrementally based on priorities and constraints, and are then maintained and extended as the priorities and constraints evolve over time.

My job gives me the opportunity to work with large enterprise companies to help them succeed in their efforts related to data, business intelligence, and analytics. Many of these companies have built successful BI architectures and are reaping the benefits of their work. These companies may well be characterized as being “good w/ BI” but none of them are resting on their laurels – they are instead looking for ways to extend the scope of their BI investments, and to optimize what they have.

I don’t believe BI is going anywhere in the near future. Not only are most companies not “good w/ BI” today, the concept of being “good w/ BI” simply doesn’t make sense in the context in which BI exists. So long as business requirements and environments change over time, and so long as businesses need to understand and react, there will be a continuing need for BI. Being “good w/ BI” isn’t a meaningful concept beyond a specific point in time… and time never slows down.

If your refrigerator is stocked with what your family likes to eat, are you “good w/ food”? This may be the case today, but what about when your children become teenagers and eat more? What about when someone in the family develops food allergies? What about when one of your children goes vegan? What about when the kids go off to college? Although this analogy won’t hold up to close inspection[5] it hopefully shows how difficult it is to be “good” over the long term, even for a well-understood problem domain, when faced with easily foreseeable changes over time.

Does any of this mean that BI represents the full set of capabilities that successful organizations need? Definitely not. More and more, BI is becoming “table stakes” for businesses. Without BI it’s becoming more difficult for companies to simply survive, and BI is no longer a true differentiator that assures a competitive advantage. For that advantage, companies need to look at other ways to get value from their data, including predictive and prescriptive analytics, and the development of a data culture that empowers and encourages more people to do more things with more data in the execution of their duties.

And of course, this may well have been Eric’s point from the beginning…

 


[1] I’ve been serving on the jury for a moderately complex civil trial for most of August, and because the trial is in downtown Seattle during business hours I have been working early mornings and evenings in the office, and taking the bus to the courthouse to avoid the traffic and parking woes that plague Seattle. I am very, very tired.

[2] Please remind me to add “thought leader” to my LinkedIn profile. Also maybe something about blockchain.

[3] I’ll leave this as an exercise for the reader.

[4] At least in my reality. Your mileage may vary.

[5] Did this analogy hold up to even distant observation?

Are you building a BI house of cards?

Every few weeks I see someone asking about using Analysis Services as a data source for Power BI dataflows. Every time I hear this, I cringe, and then include advice something like this[1] in my response.

Using Analysis Services as a data source is an anti-pattern – a worst practice. It is not recommended, and any solution built using this pattern is likely to produce dissatisfied customers. Please strongly consider using other data sources, likely the data sources on which the AS model is built.


There are multiple reasons for this advice.


Some reasons are technical. Extraction of large volumes of data is not what an Analysis Services model is designed for. Performance for the ETL process is likely to be poor, and you’re likely end up with memory/caching issues on the Analysis Services server. Beyond this, AS models typically don’t include the IDs/surrogate keys that you need for data warehousing, so joining the AS data to other data sources will be problematic.[2]


For some specific examples and technical deep dives into how and why this is a bad idea, check out this excellent blog post from Shabnam Watson. The focus of the post is on SSAS memory settings, but it’s very applicable to the current discussion.


Some reasons for this advice are less technical, but no less important. Using analytics models as data sources for ETL processing are a strong code smell[3] (“any characteristic in the source code of a program that possibly indicates a deeper problem”) for business intelligence solutions.


Let’s look at a simple and familiar diagram:


01 good


There’s a reason this left-to-right flow is the standard representation of BI applications: it’s what works. Each component has specific roles and responsibilities that complement each other, and which are aligned with the technology used to implement the component. This diagram includes a set of logical “tiers” or “layers” that are common in analytics systems, and which mutually support each other to achieve the systems’ goals.
Although there are many successful variations on this theme, they all tend to have this general flow and these general layers. Consider this one, for example:


02 ok

This example has more complexity, but also has the same end-to-end flow as the simple one. This is pretty typical for  scenarios where a single data warehouse and analytics model won’t fulfill all requirements, so the individual data warehouses, data marts, and analytics models each contain a portion – often an overlapping portion – of the analytics data.

Let’s look at one more:

03 - trending badly

This design is starting to smell. The increased complexity and blurring of responsibilities will produce difficulties in data freshness and maintenance. The additional dependencies, and the redundant and overlapping nature of the dependencies means that any future changes will require additional investigation and care to ensure that there are no unintended side effects to the existing functionality.

As an aside, my decades of working in data and analytics suggest that this care will rarely actually be taken. Instead, this architecture will be fragile and prone to problems, and the teams that built it will not be the teams who solve those problems.

And then we have this one[4]:

04 - hard no

This is what you get when you use Analysis Services as the data source for ETL processing, whether that ETL and downstream storage is implemented in Power BI dataflows or different technologies. And this is probably the best case you’re likely to get when you go down this path. Even with just two data warehouses and two analytics models in the diagram, the complex and unnatural dependencies are obvious, and are painful to consider.

What would be better here?[5] As mentioned at the top of the post, the logical alternative is to avoid using the analytics model and to instead use the same sources that the analytics model already uses. This may require some refactoring to ensure that the duplication of logic is minimized. It may require some political or cross-team effort to get buy-in from the owners of the upstream systems. It may not be simple, or easy. But it is almost always the right thing to do.

Don’t take shortcuts to save days or weeks today that will cause you or your successors months or years to undo and repair. Don’t build a house of cards, because with each new card you add, the house is more and more likely to fall.


[1] Something a lot like this. I copied this from a response I sent a few days ago.

[2] Many thanks to Chris Webb for some of the information I’ve paraphrased here. If you want to hear more from Chris on this subject, check out this session recording from PASS Summit 2017. The whole session is excellent; the information most relevant to this subject begins around the 26 minute mark in the recording. Chris also gets credit for pointing me to Shabnam Watson’s blog.

[3] I learned about code smells last year when I attended a session by Felienne Hermans at Craft Conference in Budapest. You can watch the session here. And you really should, because it’s really good.

[4] My eyes are itching just looking at it. It took an effort of will to create this diagram, much less share it.

[5] Yes, just about anything would be better.

Quick Tip: Creating “data workspaces” for dataflows and shared datasets

Power BI is constantly evolving – there’s a new version of Power BI Desktop every month, and the Power BI service is updated every week. Many of the new capabilities in Power BI represent gradual refinements, but some are significant enough to make you rethink how you your organization uses Power BI.

Power BI dataflows and the new shared and certified datasets[1] fall into the latter category. Both of these capabilities enable sharing data across workspace boundaries. When building a data model in Power BI Desktop you can connect to entities from dataflows in multiple workspaces, and publish the dataset you create into a different workspace altogether. With shared datasets you can create reports and dashboards in one workspace using a dataset in another[2].

The ability to have a single data resource – dataflow or dataset – shared across workspaces is a significant change in how the Power BI service has traditionally worked. Before these new capabilities, each workspace was largely self-contained. Dashboards could only get data from a dataset in the same workspace, and the tables in the dataset each contained the queries that extracted, transformed, and loaded their data. This workspace-centric design encouraged[3] approaches where assets were grouped into workspaces because of the platform, and not because it was the best way to meet the business requirements.

Now that we’re no longer bound by these constraints, it’s time to start thinking about having workspaces in Power BI whose function is to contain data artifacts (dataflows and/or datasets) that are used by visualization artifacts (dashboards and reports) in other workspaces. It’s time to start thinking about approaches that may look something like this:

data centric workspaces

Please keep in mind these two things when looking at the diagram:

  1. This is an arbitrary collection of boxes and arrows that illustrate a concept, and not a reference architecture.
  2. I do not have any formal art training.

Partitioning workspaces in this way encourages reuse and can reduce redundancy. It can also help enable greater separation of duties during development and maintenance of Power BI solutions. If you have one team that is responsible for making data available, and another team that is responsible for visualizing and presenting that data to solve business problems[4], this approach can given each team a natural space for its work. Work space. Workspace. Yeah.

Many of the large enterprise customers I work with are already evaluating or adopting this approach. Like any big change it’s safer to approach this effort incrementally. The customers I’ve spoken to are planning to apply this pattern to new solutions before they think about retrofitting any existing solutions.

Once you’ve had a chance to see how these new capabilities can change how your teams work with Power BI, I’d love to hear what you think.

Edit 2019-06-26: Adam Saxton from Guy In A Cube has published a video on Shared and Certified datasets. If you want another perspective on how this works, you should watch it.


[1] Currently in preview: blog | docs.

[2] If you’re wondering how these capabilities for data reuse relate to each other, you may want to check out this older post, as the post you’re currently reading won’t go into this topic: Lego Bricks and the Spectrum of Data Enrichment and Reuse.

[3] And in some cases, required.

[4] If you don’t, you probably want to think about it. This isn’t the only pattern for successful adoption of Power BI at scale, but it is a very common and tested pattern.

Self-Service BI: Asleep at the wheel?

I’ve long been a fan of the tech new site Ars Technica. They have consistently good writing, and they cover interesting topics that sit at the intersection of technology and life, including art, politics[1], and more.

When Ars published this article earlier this week, it caught my eye – but not necessarily for the reason you might think.

sleeping tesla

This story immediately got me thinking about how falling asleep at the wheel is a surprisingly good analogy[2] for self-service BI, and for shadow data in general. The parallels are highlighted in the screen shot above.

  1. Initial reaction: People are using a specific tool in a way we do not want them to use it, and this is definitely not ideal.
  2. Upon deeper inspection: People are already using many tools in this bad way, and were it not for the capabilities of this particular tool the consequences would likely be much worse.

If you’re falling asleep at the wheel, it’s good to have a car that will prevent you from injuring or killing yourself or others. It’s best to simply not fall asleep at the wheel at all, but that has been sadly shown to be an unattainable goal.

If you’re building a business intelligence solution without involvement from your central analytics or data team, it’s good to have a tool[3] that will help prevent you from misusing organizational data assets and harming your business. It’s best to simply not “go rogue” and build data without the awareness of your central team at all, but that has been sadly shown to be an unattainable goal.

Although this analogy probably doesn’t hold up to close inspection as well as the two-edge sword analogy, it’s still worth emphasizing. I talk with a lot of enterprise Power BI customers, and I’ve had many conversations where someone from IT talks about their desire to “lock down” some key self-service feature or set of features, not fully realizing the unintended consequences that this approach might have.

I don’t want to suggest that this is inherently bad – administrative controls are necessary, and each organization needs to choose the balance that works best for their goals, priorities, and resources. But turning off self-service features can be like turning off Autopilot in a Tesla. Keeping users from using a feature is not going to prevent them from achieving the goal that the feature enables. Instead, it will drive[4] users into using other features and other tools, often with even more damaging consequences.

Here’s a key quote from that Ars Technica article:

We should be crystal clear about one point here: the problem of drivers falling asleep isn’t limited to Tesla vehicles. To the contrary, government statistics show that drowsy driving leads to hundreds—perhaps even thousands—of deaths every year. Indeed, this kind of thing is so common that it isn’t considered national news—which is why most of us seldom hear about these incidents.

In an ideal world, everyone will always be awake and alert when driving, but that isn’t the world we live in. In an ideal world, every organization will have all of the data professionals necessary to engage with every business user in need. We don’t live in that world either.

There’s always room for improvement. Tools like Power BI[5] are getting better with each release. Organizations keep maturing and building more successful data cultures to use those tools. But until we live in an ideal world, we each need to understand the direct and indirect consequences of our choices…


[1] For example, any time I see stories in the non-technical press related to hacking or electronic voting, I visit Ars Technica for a deeper and more informed perspective. Like this one.

[2] Please let me explicitly state that I am in no way minimizing or downplaying the risks of distracted, intoxicated, or impaired driving. I have zero tolerance for these behaviors, and recognize the very real dangers they present. But I also couldn’t let this keep me from sharing the analogy…

[3] As well as the processes and culture that enable the tool to be used to greatest effect, as covered in a recent post: Is self-service business intelligence a two-edged sword?

[4] Pun not intended, believe it or not.

[5] As a member of the Power BI CAT team I would obviously be delighted if everyone used Power BI, but we also don’t live in that world. No matter what self-service BI tool you’ve chosen, these lessons will still apply – only the details will differ.

Is self-service business intelligence a two-edged sword?

I post about Power BI dataflows a lot, but that’s mainly because I love them. My background in data preparation and ETL, combined with dataflows’ general awesomeness makes them a natural fit for my blog. This means that people often think of me as “the dataflows guy” even though dataflows are actually a small part of my role on the Power BI CAT team. Most of what I do at work is help large enterprise customers successfully adopt Power BI, and to help make Power BI a better tool for their scenarios[1].

As part of my ongoing conversations with senior stakeholders from these large global companies, I’ve noticed an interesting trend emerging: customers describing self-service BI as a two-edged sword. This trend is interesting for two main reasons:

  1. It’s a work conversation involving swords
  2. Someone other than me is bringing swords into the work conversation[2]

As someone who has extensive experience with both self-service BI and with two-edged swords, I found myself thinking about these comments more and more – and the more I reflected, the more I believed this simile holds up, but not necessarily in the way you might suspect.

This week in London I delivered a new presentation for the London Power BI User Group – Lessons from the Enterprise: Managed Self-Service BI at Global Scale. In this hour-long presentation I explored the relationship between self-service BI and two-edged swords, and encouraged my audience to consider the following points[4]:

  • The two sharp edges of a sword each serve distinct and complementary purposes.
  • A competent swordsperson knows how and when to use each, and how to use them effectively in combination.
  • Having two sharp edges is only dangerous to the wielder if they are ignorant of their tool.
  • A BI tool like Power BI, which can be used for both “pro” IT-driven BI and self-service business-driven BI has the same characteristics, and to use it successfully at scale an organization needs to understand its capabilities and know how to use both “edges” effectively in combination.

As you can imagine, there’s more to it than this, so you should probably watch the session recording.

ssbi and swords

If you’re interested in the slides, please download them here: London PUG – 2019-06-03 – Lessons from the Enterprise.

If you interested in the videos shown during the presentation, they’re included in the PowerPoint slides, and you can view them on YouTube here:

For those who are coming to the Microsoft Business Applications Summit next week, please consider joining the CAT team’s “Enterprise business intelligence with Power BI” full-day pre-conference session on Sunday. Much of the day will be deep technical content, but we’ll be wrapping up with a revised and refined version of this content, with a focus on building a center of excellence and a culture of data in your organization.

Update 2019-06-10: The slides from the MBAS pre-conference session can be found here: PRE08 – Enterprise business intelligence with Power BI – Building a CoE.

There is also a video of the final demo where Adam Saxton joined me to illustrate how business and IT can work together to effectively respond to unexpected challenges. If you ever wondered what trust looks like in a professional[5] environment, you definitely want to watch this video.

 


[1] This may be even more exciting for me than Power BI dataflows are, but it’s not as obvious how to share this in blog-sized pieces.

[2] Without this second point, it probably wouldn’t be noteworthy. I have a tendency to bring up swords more often in work conversations than you might expect[3].

[3] And if you’ve been paying attention for very long, you’ll probably expect this to come up pretty often.

[4] Pun intended. Obviously.

[5] For a given value of “professional.”